使用 Visual Studio 和 python 设置自己的数据科学工作
|
![]() 新手在刚刚开始数据科学的学习时会遇到很多问题,而往往最简单的问题也最容易犯错。其中,管理 python 环境可能是一件让人头疼的事情。,搭建一个好的工作空间将让你避免很多不必要的麻烦。 如果你正在工作,你的 python 环境突然不起作用了怎么办?关于这个问题,荷兰数据分析师 Christiaan Dollen 近日发表了一篇博文,在文中他分享了用 Visual Studio(VS)和 python 设置自己的数据科学工作区的经验,这些经验或许可以帮助你避免这些问题。雷锋网 AI 开发者将全文编辑如下: 如果你刚开始从事数据科学领域,那么创建一个个人工作空间将帮助你保持项目的有序性。有很多不同的工具可以使用。在这篇文章中,我将向你展示如何使用一些业内最常用的工具在 MacOS 上建立自己的工作区。当然,Windows 平台的步骤和 MacOS 几乎相同。在学完之后,你将能够:
用 Anaconda 搭建一个 python 环境 让我们开始吧! 使用 Anaconda 设置 python 环境 Anaconda 主要用于应用数据科学、机器学习、数据处理、分析等。它允许你管理你自己的环境和将在项目中使用的包。为了构建我们的工作区,我们需要安装和配置 Anaconda。步骤如下:
安装 Anaconda 下载并安装 Anaconda 去 Anaconda 网站下载最新版本的 Anaconda,你可以使用 python 3.7 和 python 2.7 下载 Anaconda。虽然我个人更喜欢使用最新版本的 python,但有时 python 包需要特定版本的 python,因此需要设置多个 python 环境。安装好 Anaconda 后,启动它。 在 Anaconda 中管理不同的环境 打开 Anaconda 后,你会看到 Anaconda 已经设置了一些工具和软件包,如 Jupyter、Spyder。注意,上面有一个安装 VS 代码的选项。
![]()
Anaconda Navigator 附带了预安装的默认软件包 同时,导航到左侧菜单中的环境。在这里,你会发现 Anaconda 已经配置了一个基本环境,你可以直接用它工作了。
![]()
Anaconda Navigator 界面显示安装在基本环境上的包 从这里可以选择要运行的环境,你还可以直接从终端运行 bash 命令。
![]()
通过 Anaconda Navigator 直接打开终端 虽然这里面已经安装了很多软件包,但是你可能想安装新的软件包或者用不同版本的 python 安装不同的包,因此你西药配置环境。 单击创建和配置新的 python 环境。 选择最新版本的 python 并再次单击「创建」进行确认。
![]()
Anaconda 也可以用在 R 中,但在本例中我们将使用 python。 配置环境需要几秒钟。几分钟后,你会注意到一个新的环境已经安装了一些默认软件包。一旦设置好 python 环境,你将主要使用终端安装软件包,并且你可能较少使用 Anaconda Navigator。 太棒了!现在我们只需要一个工作区来使用 Python 环境,这样我们就可以用我们的包运行脚本。你可以用 Anaconda 附带的 Jupyter notebook,但我喜欢用 VS Code,我会很快解释原因。 在 VS Code 中创建数据科学工作区 VS Code 是一个免费的代码编辑器,你可以根据需要定制。它是一个轻量级的 IDE,为在自己的自定义工作区中运行 python 提供了极好的支持。在上一章中,我们设置了 Anaconda 并安装了 VS Code。 打开 VS Code
![]()
第一次启动 VS Code 时的欢迎界面 VS Code 是一个功能强大、轻量级的代码编辑器,允许你为每个项目配置自己的工作区。为了测试,我创建了一个名为 DataScienceProject 的虚拟文件夹。
单击 Open Folder 并选择文件夹 现在你已经在 VS Code 中设置了一个自定义工作区。工作区的好处是,你可以为每个单独的工作区进行自定义设置。 现在,在工作区中创建一个名为 helloworld.py 的新文件。 打开 helloworld.py。 将下面的代码复制到您的文件中并保存它。
#%% 这个时候,在打开文件时,你可能会收到各种各样的消息,比如「pylint package not installed」。这是因为 VS Code 自动识别出你正在编辑的是一个 python 文件。首先让我们看看是否可以运行我们的 python 文件。你可以直接在终端或从交互式 python 窗口运行它。交互式 python 窗口非常有用,因为它在调试代码时提供了更多的反馈,而且还允许你在 python 脚本中运行称为 cells 的不同代码段。 要运行脚本,请按 shift-enter。你也可以右键单击该文件并选择「在终端中运行 python 文件」或「在交互窗口中运行 python 文件」。 在运行第一个脚本之后,你会看到代码右侧的交互式 Python 窗口,并返回类似的内容。
[1] # This is the first cell of our Python code... 祝贺你!你刚刚在 Visual Studio 代码中设置了一个工作区来运行 python 项目!现在,让我们更深入地研究一下,看看是否可以在我们的环境中安装新的包。 管理终端内的包 现在我们运行了第一个脚本,你可能需要添加一个新的包。假设您的项目要求您连接到某个 Google API。Google 为我们提供了一个包来完成此操作,但这些包并没有安装在你的默认环境中。幸运的是,我们有很多可用的包。Anaconda 有自己的软件包存储库,还有更多的存储库可供我们查找软件包。我们在示例中寻找的包是 Google API Python Client。请执行下面这些步骤。 打开终端,确保你在基本环境中工作,终端展示的内容如下: (base) myMac:DataScienceProject myUser$ 通过在终端中输入以下命令检查包是否已安装: conda list 这将返回当前安装在基本环境中的包列表。现在,通过在终端中运行以下命令来安装包: conda install -c conda-forge google-api-python-client 包现在将安装在基本环境中。如果一切正常,您将在终端中看到以下消息(下面只是你应该看到的消息的一部分)。
![]()
真是令人惊叹!我们已经在我们的环境中成功地安装了一个新的包。这将允许你导入包相关的库,并在脚本中使用 Google API Python Client。 但是,如果你已经在基本环境中运行了包,并且不想冒险,以免造成当前环境设置混乱呢?你可以使用新环境并为该环境安装不同的包。现在我们知道了如何安装一个包,接下来将展示如何从 VS Code 中更改你的 Python 环境。 管理工作区中的 python 环境 除了在自己的自定义工作区中工作之外,你还可以在编辑器本身中管理 Anaconda。这样做的话,你就不必反复运行 Anaconda Navigator,只需直接从编辑器中运行一个 python 环境,这样你就可以继续编码了。 你注意到编辑器底部的蓝色滚动条了吗?它提供了你正在处理的代码的信息。在滚动条的最左边,你可以看到当前正在使用的解释器。在我的例子中使用的是: Python 3.7.3 64-bit ('base':conda) 如你所见,我正在 Anaconda 的基础环境中运行 python 3.7.3。它还会告诉你代码中是否存在任何问题、有多少行、多少列、多少空格、你当前选择编程语言等。 通过单击解释器,你可以选择其他解释器。例如,我们之前在 Anaconda 中创建的 python 环境。 单击你的解释器并选择我们先前创建的解释器。
![]()
如何选择不同的 python 解释器 现在,当你从基本解释器切换到新的解释器时,有时 jupyter 服务器启动会遇到问题。jupyter 服务器运行在内核上,内核在某种程度上是你的 Python 环境的引擎。jupyter 内核对于在 VS Code 中运行代码非常重要,尤其是在交互式 python 窗口中运行代码时尤为重要。如果你碰巧遇到这些错误,请在终端中 尝试以下操作: 在 MacOS 上:
source activate 在 Windows 上:
activate python -m ipykernel install --user 这将在你的环境中安装一个内核。重新启动 VS Code 编辑器,并尝试在新选择的解释器(python37:conda)中运行代码。 如果一切顺利的话,恭喜你,你已经在 VS Code 中成功地设置了自己的工作区,现在可以将其用于 python 项目了! 写在最后 管理你的 Python 环境可能会让人头疼。了解如何管理你的环境和软件包会让你的工作更加灵活,并能防止某个环境突然停止工作的压力。这就是我向你展示如何切换环境和安装软件包的原因,因为这些是最容易遇到的错误。 当然,我还没有向你展示使用 VS Code 或 Anaconda 可以做的一切,因此我建议你接下来阅读以下文章: Best packages for data science with Python An extensive list of extensions for Visual Studio Code Using Version Control with GitHub for Visual Studio Code 希望这本指南对你有所帮助,编码愉快! via:https://towardsdatascience.com/setting-up-your-own-data-science-workspace-with-visual-studio-code-and-anaconda-python-22237590b4ed |
时间:2019-08-27 12:49 来源: 转发量:次
声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。