大数据之HBase MapReduce的实例分析

编辑时间: 2018-08-17 14:37:17    关键字:

 Hadoop的无缝集成使得使用MapReduce对HBase的数据进行分布式计算非常方便,本文将以前面的blog示例,介绍HBase下MapReduce开发要点。很好理解本文前提是你对Hadoop MapReduce有一定的了解。

HBase MapReduce核心类介绍

首先一起来回顾下MapReduce的基本编程模型,

 

 

可以看到最基本的是通过Mapper和Reducer来处理KV对,Mapper的输出经Shuffle及Sort后变为Reducer的输入。除了Mapper和Reducer外,另外两个重要的概念是InputFormat和OutputFormat,定义了Map-Reduce的输入和输出相关的东西。HBase通过对这些类的扩展(继承)来方便MapReduce任务来读写HTable中的数据。

 

 

实例分析

我们还是以最初的blog例子来进行示例分析,业务需求是这样:找到具有相同兴趣的人,我们简单定义为如果author之间article的tag相同,则认为两者有相同兴趣,将分析结果保存到HBase。除了上面介绍的blog表外,我们新增一张表tag_friend,RowKey为tag,Value为authors,大概就下面这样。

 

 

我们省略了一些跟分析无关的Column数据,上面的数据按前面描述的业务需求经过MapReduce分析,应该得到下面的结果

 

 

实际的运算过程分析如下

 

 

代码实现

有了上面的分析,代码实现就比较简单了。只需以下几步

定义Mapper类继承TableMapper,map的输入输出KV跟上面的分析一致。public static class Mapper extends TableMapper {

public Mapper() {}
@Override
public void map(ImmutableBytesWritable row, Result values,Context context) throws IOException {
ImmutableBytesWritable value = null;
String[] tags = null;
for (KeyValue kv : values.list()) {
if ("author".equals(Bytes.toString(kv.getFamily()))
&& "nickname".equals(Bytes.toString(kv.getQualifier()))) {
value = new ImmutableBytesWritable(kv.getValue());
}
if ("article".equals(Bytes.toString(kv.getFamily()))
&& "tags".equals(Bytes.toString(kv.getQualifier()))) {
tags = Bytes.toString(kv.getValue()).split(",");
}
}
for (int i = 0; i < tags.length; i++) {
ImmutableBytesWritable key = new ImmutableBytesWritable(
Bytes.toBytes(tags[i].toLowerCase()));
try {
context.write(key,value);
} catch (InterruptedException e) {
throw new IOException(e);
}
}
}
}

定义Reducer类继承TableReducer,reduce的输入输出KV跟上面分析的一致。public static class Reducer extends TableReducer {

@Override
public void reduce(ImmutableBytesWritable key,Iterable values,
Context context) throws IOException, InterruptedException {
String friends="";
for (ImmutableBytesWritable val : values) {
friends += (friends.length()>0?",":"")+Bytes.toString(val.get());
}
Put put = new Put(key.get());
put.add(Bytes.toBytes("person"), Bytes.toBytes("nicknames"),
Bytes.toBytes(friends));
context.write(key, put);
}
}

在提交作业时设置inputFormat为TableInputFormat,设置outputFormat为TableOutputFormat,可以借助TableMapReduceUtil类来简化编码。public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();
conf = HBaseConfiguration.create(conf);
Job job = new Job(conf, "HBase_FindFriend");
job.setJarByClass(FindFriend.class);
Scan scan = new Scan();
scan.addColumn(Bytes.toBytes("author"),Bytes.toBytes("nickname"));
scan.addColumn(Bytes.toBytes("article"),Bytes.toBytes("tags"));
TableMapReduceUtil.initTableMapperJob("blog", scan,FindFriend.Mapper.class,
ImmutableBytesWritable.class, ImmutableBytesWritable.class, job);
TableMapReduceUtil.initTableReducerJob("tag_friend",FindFriend.Reducer.class, job);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}

对大数据感兴趣的朋友可以加我的群 615997810 一起交流学习,还有免费资料可以领取

1,_推荐系统理论与实战项目 Part2

2,推荐系统理论与实战 项目Part1

3.实时交易监控系统项目(下)

4,实时交易监控系统项目(上)

5,用户行为分析系统项目

6,分布式全文搜索引擎ElasticSearch Part2

7,大数据批处理之HIVE详解

8,ES公开课 part1

9,spark_streaming_

10,数据仓库搭建详解

11,大数据任务调度

12,流数据集成神器Kafka

13,Spark 公开课

14,海量日志收集利器:Flume

15,Impala简介

16,Hive简介

17,MapReduce简介

18海量数据高速存取数据库 HBase

19,浅谈Hadoop管理器yarn原理

小结

本文通过实例分析演示了使用MapReduce分析HBase的数据,需要注意的这只是一种常规的方式(分析表中的数据存到另外的表中),实际上不局限于此,不过其他方式跟此类似。如果你进行到这里,你肯定想要马上运行它看看结果,希望大家多多关注哦。

推荐热图

合作推荐

2010-2018 可思数据版权所有 About SYKV | ICP备案:京ICP备14056871号